FPパパの雑記

FP2級を持つWebプランナーパパの雑記です、日々調べたことなどを書いていきたいと思います。虫の知らせトレードが得意。WEB系のIT企業勤務、データマネジメント担当、シルクホースクラブにて一口馬主に挑戦中、家事は料理担当

イボの数が多すぎて絶望的な気持ちになる

これは左手だけどめっちゃある

世間はコロナウイルスに襲われているけど自分はヒトピロマウイルスに襲われている。

イボの原因はウイルス性、ヒトピロマウイルスという子宮頸がんの原因のウイルスの仲間。

免疫力が弱いとイボは繁殖していく。

自分は一応慢性骨髄性白血病の薬飲んでいて骨髄抑制が効いているのかのであっという間にこうなった。


f:id:jralove:20200801095403j:image

 

イボを焼いてきた

治療は液体窒素で火傷させてイボごと壊死させるのが標準治療。

イボ一つ一つを液体窒素で焼いて水ぶくれを作っていく。

焼いているときも痛いけど、その後がジクジク痛いのも辛い。

でもさっさとやっつけないと増えるので頑張る。
f:id:jralove:20200801095527j:image

 

皮膚科学会の標準治療

治療ガイドラインは作られていて治療方法は決まっている。

半年くらいで治るといいな。


f:id:jralove:20200802192323j:image

イボ悩まされている今日この頃(閲覧注意)

イボが辛い

ウイルス性のイボが増殖し続けて辛い。

病院は行っているけどあまり進展がない。

免疫力が関係してくるっぽいので、持病の慢性骨髄性白血病も関係ありそうだけどわからない。

とにかく辛い。

画像はめっちゃ下だけど閲覧注意

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


f:id:jralove:20200727223355j:image

f:id:jralove:20200727223404j:image

在宅勤務を続けて3ヶ月 思った事を書く。正直疲れた

在宅勤務歴

4月1日に出社したっきり、1日たりとも出社してない。

在宅勤務で感じたことを徒然と書く。

はてなとか見てると在宅サイコーと言う声が大きいけど、自分は出社の方が好きだな。


f:id:jralove:20200713221717j:image

 

業務環境

都内在住、勤務先も都内

家から会社まで50分(徒歩20分 電車20分 待ち10分)

会社のノートPCからVPN接続

コミュニケーションはzoomとslack

フレックス制

家は2DKで4人暮らしで自分の部屋はなく狭い

奥さんは育休中

 

通勤

通勤はしなくて良くなったので始業時間を10時から9時へ1時間早めた。そして終業時間を18時へ。

通勤はキツイのかと言うと10時だと座れないけど潰されない程度でそんなにきつくなくて、朝のルーティーンだった情報収集が無くなった。

帰りもこのブログを更新する時間に充てていたんだけど、通勤が無くなって更新しなくなった。

 

通勤は△

 

業務中

家は業務用の環境が整ってない、1番キツイのはデスク周りで椅子と机がイケてない最初の頃は一週間で首を痛めてしまった。

モニターとクッションを導入したら良くなったけど会社の机と椅子は素晴らしい。

あとは家が狭くて移動が無くなった。会社があるときの平均歩数は8000歩だったけど、いまは2000歩くらいになってしまった。

肝心の業務効率は上がりもせず下がりもせずと言ったところか。

勤務中は特にいいと思うことはなかった。

つまり会社としては効率下がらないのでいいけど、個人としてはダメという結果に。

 

 

業務中は×

 

会議

会議もzoomがあるので普通にやっているけど、zoomの会議はなぜか疲れる。

おそらくちゃんとやらないと結果が出ないので対面よりも準備するし、ファシリテーションもちゃんとするので疲れるのだと思う。

まあ何かだめかというとそうでもないかな。

これからの営業はまずzoomで、ある程度したら対面で良い気がする。

 

会議は△

 

家庭との兼ね合い

業務中だけど、奥さんから家事と育児を頼られてかなりキツイ。

在宅なのでできる事はやろうと思っているのでやるけど昼休みがほとんど無くなってお昼作ったり、仕事が終わったと同時にお風呂入れたりして仕事と家庭の切り替える場面と時間が無くて辛い。

仕事モードの頭で家事育児をやるので、奥さんや子供への返答がロジカルになってしまったりしている。

そんな頭にずっとなってるので疲れる。

 

家庭との兼ね合いは×

 

まとめ

通勤があまり辛くなくて、家庭持ちの自分のような人は出社派の人も多いんじゃないだろうか。

そろそろ出社を考えている今日この頃

【機械学習で競馬予想】非エンジニアがAzureの機械学習機能で競馬の予想した手順を公開

過去の記事をまとめたよ

機械学習の本を買ってから、データを収集、データの前処理、Azureに取り込み、機械学習を走らせて、結果を分析するまでの手順まとめ

機械学習の本を読んだ

子供が産まれる直前に読む時間もあるだろうと、クラウドではじめる機械学習

という本を読んだ。

ざっくり内容を書くと、マイクロソフトのAzure Machine Learning Studioを使いながら

機械学習を学ぶ本だった。

自分でも機械学習で何かを予想できそうだったので、競馬の予想をしてみようと思った。

できるかわからないけど、予想までの過程をまとめる。 

クラウドではじめる機械学習 改訂版 --Azure ML Studioでらくらく体験

クラウドではじめる機械学習 改訂版 --Azure ML Studioでらくらく体験

 

 

 Azure Machine Learning Studioを申し込む

マイクロソフトのページから申し込みを行う。

https://azure.microsoft.com/ja-jp/services/machine-learning-studio/

 

Free Workspaceを選ぶと、無料プランの申し込みができるので

とりあえずこれを申し込んでみた。

 

そうすると、無料の機能がつかえるのだけど、本には機能が制限されているから

有料プランのほうがいいと書いてあったけど、とりあえず無料を申し込んだ。

 

競馬データを集める

競馬に関する過去データはJRAのソフトからCSV形式で集めることができると書いてある。

https://jra-van.jp/dlb/

 

とりあえず、無料トライアルが申し込めたので申し込んでみた

https://app.jra-van.jp/member/WAAlAdr0001.do

 

あとは、無料トライアルをしつつ、過去データを収取しよう。

競馬のデータを取得するのに苦労する話

前準備として、データを準備しないといけない。

前回書いたようにJRAのソフトを使って集めてみた。

競馬データを集める

競馬に関する過去データはJRAのソフトからCSV形式で集めることができると書いてある。

https://jra-van.jp/dlb/

 

とりあえず、無料トライアルが申し込めたので申し込んでみた

https://app.jra-van.jp/member/WAAlAdr0001.do

久々にDVDの起動を行ってソフトをインストールした。

DVDには5本のソフトが入っていて、どれ使っていいのかよくわからないものの

一番右上にあったTarget というものを入れてみた。

 

Target

公式サイトはこちら

http://target.a.la9.jp/

見事当たりだったみたいで、成績のCSVを出力することができた。

 

このソフトのデータ量ほんとに半端なくて、過去数十年間の競馬データが全部出力できる。

いろいろエクスポートしてはまったことを書く

 

1.エクスポートデータに項目名が書いていない

項目名は別で載せているらしい

http://faqnavi13a.csview.jp/faq2/userqa.do?user=jravan&faq=faq01_target&id=285&parent=20

 

2.とりあえず全項目をエクスポート

項目の意味がマニアックすぎて競馬知っている人でもよくわからないから使えない

 

3.基本データエクスポート

データが途中入っていない列があって、フル+オッズを選ばないといけないっぽい

 

f:id:jralove:20191116233843p:plain

 

とりあえず、10年分のデータをエクスポートして、今日は終了。

インストールに3時間、エクスポートに2時間くらい費やしました。

 

競馬のデータを取得したけど、全然中身がなかった

メインメニューから開催成績CSV出力を選ぶとデータのエクスポートはできるのだけど、ヘルプに書いてある項目は前走もありもっととれるデータがある様子。

なので、今日はツールを触ってみてどうやって取得するのかまとめておく。

http://faqnavi13a.csview.jp/faq2/userqa.do?user=jravan&faq=faq01_target&id=285&parent=20

 

f:id:jralove:20191120221609p:plain

 

前走データも取得するために

ヘルプを見ると戦歴・レース検索画面のレース一覧CSV形式とかいてあるので

レース検索画面をいじってみる。

基本全部のデータをエクスポートしたいのでここでは何も絞り込まず次へ。

f:id:jralove:20191120221850p:plain

 

選択馬の条件設定

最初は1着のみになっているので、28着までを選ぶ。

取消・除外馬を検索しないにチェックする。

そして、次へ。

f:id:jralove:20191120222228p:plain


出力期間の選択

あとは、期間を選択して検索実行すればレース検索ができる。

f:id:jralove:20191120222503p:plain

 

前走データを追加する

出力すると、レースのデータが出力されるけどここではまだ前走データは入っていない。

ここから「前走読込」を押すと前走データが追加される。

f:id:jralove:20191120222632p:plain

 

前走データを追加したものをCSVで出力する

ここまで出来たら、あとはCSVで出力するだけ。

「レース一覧・成績CSV形式(項目固定)」をクリックして出力する

f:id:jralove:20191120222948p:plain

 

出力したデータを保存する

あとは保存するファイル名を記入して、保存をすればCSV形式でエクスポートできる。

f:id:jralove:20191120223207p:plain

 

 

いっぱいデータが集まったので予測に使うデータを選別する

今回は一番新しいレース着順が1着を正解データとして、機械学習をやる予定。

なので、一番新しいレースの結果は予想のデータとしては使えないので削除する。

同じデータが名前を変えて入っている(騎手名と騎手コードとか)のでそこも削除する。

あと、Azureの文字コードUTF-8で、JRA-DatalabがShift-jisなのでこのタイミングでUTF-8に変換しておく。

距離と馬場は合わせたほうが予想できそうと思ったので、抽出するときに1200m芝専用モデルというように作ることにした。

 

項目の説明はこちらに

http://faqnavi13a.csview.jp/faq2/userqa.do?user=jravan&faq=faq01_target&id=285&parent=20

 

作成したイメージ

f:id:jralove:20191205002307p:plain

モデル作りとスコア対象

モデルには1200m芝の2008−2018年までのデータを使って作る。

そのモデルを使って2019年の1200m芝のデータを使ってオフラインテストをやって検証することにする。

削除項目

削除した項目をメモしておく。

競馬やっている感で消したものもあるので未来データだけ消しているわけではない。

迷ったのはオッズで、オッズと勝ち負けは絶対相関しているので、オッズを入れると結局オッズで選んだのと一緒になりそうと思った。

なので、オッズありモデル、オッズなしモデルの2つを使って検証することにした。

項目名 メモ
19 削除
11 削除
17 削除
回次 3 削除
場所 福島 削除
日次 6 削除
レース番号 12 削除
レース名 会津特別1000 削除
クラスコード 43 削除
芝・ダ 削除
コースコード 0 削除
距離 1200 削除
馬場状態 削除
馬名 バーミーブリーズ 削除
性別  
年齢 5  
騎手名 西田雄一  
斤量 55  
頭数 16  
馬番 14  
確定着順 1 削除
入線着順 1  
異常コード 0 削除
着差タイム 0 削除
人気順 7 削除
走破タイム 69 削除
走破時計 1090 削除
通過順1 0 削除
通過順2 0 削除
通過順3 2 削除
通過順4 2 削除
上がり3Fタイム 34.9 削除
馬体重 466 削除
調教師 青木孝  
所属地  
賞金 1500 削除
血統登録番号 14105413 削除
騎手コード 1004 削除
調教師コード 1156 削除
レースID 319361214 削除
現馬主名 吉田照哉  
生産者名 社台ファーム  
父馬名 キンシャサノキセキ  
母馬名 ウィンドハック 削除
母の父馬名 Platini  
毛色 鹿毛  
生年月日 140505  
単勝オッズ 19.4  
PCI 47.7 削除
間隔 2  
前走年 19 削除
前走月 11 削除
前走日 2 削除
前走回次 3 削除
前走場所 福島  
前走日次 1 削除
前走レース番号 11 削除
前走レース名 河北新H1000 削除
前走クラスコード 43 削除
前走芝・ダ  
前走コースコード 0  
前走距離 1200  
前走馬場状態  
前走性別  
前走騎手名 西田雄一 削除
前走斤量 52  
前走頭数 16  
前走馬番 12  
前走確定着順 2  
前走入線着順 2 削除
前走異常コード 0 削除
前走着差タイム 0.1  
前走人気順 14  
前走走破タイム 68.4 削除
前走走破時計 1084 削除
前走通過順1 0 削除
前走通過順2 0 削除
前走通過順3 8  
前走通過順4 7  
前走上がり3Fタイム 34.4  
前走馬体重 464  
前調教師 青木孝  
前所属地  
前走賞金 600 削除
前走騎手コード 1004 削除
前走競走識別コード 319311112 削除
前オッズ 68.7 削除
前走PCI 48.8 削除

  

最終的に出来上がったもの

項目を消して残ったのがこちら、一般的に予想で使うものと思っている。

項目名
馬場状態
性別
年齢 3
騎手名 秋山真一
斤量 52
頭数 18
馬番 1
入線着順 1
人気順 4
馬体重 442
調教師 音無秀孝
所属地
現馬主名 吉田照哉
生産者名 社台ファーム
父馬名 ディープインパクト
母の父馬名 Giant's Causeway
毛色 黒鹿
生年月日 160302
間隔 15
前走場所 京都
前走クラスコード 23
前走芝・ダ
前走距離 1600
前走馬場状態
前走騎手名 松若風馬
前走斤量 54
前走馬番 3
前走確定着順 0
前走着差タイム 999.9
前走人気順 0
前走通過順3 0
前走通過順4 0
前走上がり3Fタイム 0
前走馬体重 0
前オッズ 0

 

データの準備ができたので、予測をする

前回までの記事はこちら。

データの取得から前処理まで終わったところ。

データの準備ができたのでAzureMLを使って予測をする

  

AzureMLの設定

AzureMLのキャプチャを張りたかったのだけど、無料期間が過ぎて解約してしまったので、記事を書いた時にはもうログインができなかった。

本を見ながらやったので、大体このページと同じ設定にすると予測ができる。

今回はほんの通りロジスティック回帰を使って予測をした。

それ以外のアルゴリズムを試す前に試用期間が終わったので試していない。

最後にCSVに変換するのと、ダウンロードするというものをくっつけるとCSVでDLできるようになる。


f:id:jralove:20200217221316j:image

 

予想の結果

今回はオッズを説明変数に入れているパターンを載せる。

結果はこんな感じで出力される。1着になりそうな上位30レコードをとってきた。

予測のデータの横に、予測の勝率が出る。

果たしてこの予測で買ったら儲かるのかを検証したいのだけど、まだできていない。

予測に起因した説明変数の上位も表示されたけど、もう解約したため見れない。

圧倒的1位は想定通りオッズでした。

 

予測勝率 実際のオッズ 予測の逆算オッズ 実際の着順
0.378983020782471 2.7 2.1 0
0.380202740430832 3.7 2.1 0
0.388832420110703 4.2 2.1 1
0.389530181884766 2.8 2.1 0
0.390958935022354 2 2.0 1
0.39361184835434 2.1 2.0 1
0.394054859876633 3.8 2.0 1
0.395985215902328 1.9 2.0 1
0.397620350122452 4.5 2.0 0
0.401534855365753 4.1 2.0 0
0.40315979719162 2.4 2.0 1
0.403720200061798 3 2.0 1
0.408076673746109 2.9 2.0 1
0.4115269780159 3.4 1.9 0
0.417304247617722 2.3 1.9 1
0.42043924331665 2.4 1.9 0
0.429091244935989 2 1.9 1
0.430251508951187 1.9 1.9 0
0.433185815811157 4.3 1.8 0
0.442336916923523 5.9 1.8 0
0.448809862136841 2.6 1.8 0
0.449275314807892 4 1.8 0
0.451326549053192 4.1 1.8 1
0.466164171695709 2.7 1.7 0
0.467372596263886 1.8 1.7 0
0.469014525413513 2.4 1.7 0
0.515306830406189 5 1.6 1
0.51767373085022 2.8 1.5 1
0.526918768882751 2.8 1.5 0
0.538346827030182 3.6 1.5 1

 

AzureMLの料金

Azureを使うとしきりに無料!無料!無料!無料!無料!無料!無料!無料!無料!

と表示されるので、いったいどこにお金が発生するか、何が無料なのかさっぱりわからない。

最後まで分からなかったけど、結果的には「サブスクリプション」の登録をすると月3800円かかる。

これも同意の所には無料と書かれているのでいくらなのかわからなかったけど、クレジット明細を見ると3800円だった。

無料と書いてあるのが何を指しているのかというと、3800円払うと従量課金のサーバー費用が無料になるということ。

今回競馬予想で計10回くらい処理を走らせたので、大体1000円くらいと表示された。

これは無料だった。

書いてあるのを読むとサブスクリプション代を払うと何か月かは無料になるっぽい。

 

競馬で勝ち馬を予測したところで儲からないと意味がない

競馬の予想を機械学習でやるにしても、勝つ馬を予測するのはオッズを見れば大体相関があるのでできる。

ただ、儲からないと意味がないので高オッズかつ勝てる馬をピンポイントで探せないと意味がない。

そういうことで、まずはオッズだけを見てお得な倍率はないのかを探ってみる

芝1200mだけに絞った2008年~2018年までの結果を分析

全3249レース、のべ出走頭数は49360頭のオッズを集計。

1倍台のオッズは492頭と、つくこと自体があまりないみたいだ。

1倍台の馬がいたときは半数程度は勝っている。

 

オッズ 頭数 勝ち数
1~2倍 492 241
2~3倍 1355 434
3~5倍 3791 761
5~10倍 7628 899
10~20倍 8724 522
20~50倍 10876 277
50~1000倍 16494 115
全体 49360 3249

 

全体の回収率は75.2%なので、公表している控除率とほぼ同じ。

50倍以上の大穴の馬は回収率が悪い。

少なくとも芝1200mでは、大穴を狙わないほうがよさそう。

 

オッズ 回収率 結果
1~2倍 80.2% 49.0%
2~3倍 78.1% 32.0%
3~5倍 77.7% 20.1%
5~10倍 82.0% 11.8%
10~20倍 84.7% 6.0%
20~50倍 77.0% 2.5%
50~1000倍 64.8% 0.7%
全体 75.2% 6.6%

 

過去の傾向と現在の傾向を見るため、2019年の結果を分析

全264レース、のべ出走頭数は1201頭のオッズを集計。

1倍台のオッズは45頭、過去の傾向とあまり変わりはないみたい。

1倍台の勝率は下がっている。

 

 

オッズ 出走頭数 勝ち数
1~2倍 45 19
2~3倍 121 40
3~5倍 299 55
5~10倍 612 73
10~20倍 669 39
20~50倍 859 30
50~1000倍 1201 8
全体 3806 264

 

単勝控除率が80%に変わった影響なのか、全体の回収率は上がっている。

5~20倍がおいしいのは過去の傾向と同じだけど、20~50倍がほぼ回収率100%とおいしい状況だった。

ただ、高オッズは数頭の違いで回収率に大きく影響が出るので揺れ程度の認識でよさそう。

 

オッズ 回収率 的中率
1~2倍 69.3% 42.2%
2~3倍 82.3% 33.1%
3~5倍 71.3% 18.4%
5~10倍 82.9% 11.9%
10~20倍 84.0% 5.8%
20~50倍 99.2% 3.5%
50~1000倍 60.3% 0.7%
全体 78.5% 6.9%

 

ということで5~20倍を狙おう

ということで、今日の競馬は5~20倍を買おうと思う。

次回は機械学習した結果をどう使えば儲かりそうなのかを分析してみる。

 

機械学習で勝つ確率を予測してみた

AzureMLから出力されるのは馬ごとに勝つ確率が出る。

2019年芝1200メートルを走った馬について、のべ3800頭についてそれぞれ勝つ確率は〇〇%って出力される。

 

そのまま集計しても良かったんだけど、競馬はオッズで考えるのがしっくりくるので、予想オッズを勝率から逆算して出している。

例えば機械学習で勝率50%と出たら、1/0.5*0.8=1.6倍と出している。

オッズとの比較すると雰囲気使えるかなと思っている。

予想オッズ 出走頭数 勝ち数
1~2倍 4 3
2~3倍 47 16
3~5倍 264 62
5~10倍 632 81
10~20倍 649 49
20~50倍 760 31
50~1000倍 1353 22
それ以上 97 0

 

 

機械学習で予測された勝ちそうな馬をそのまま買う

予想オッズの平均値を書いておくんだったと思いつつ、回収率と的中率を出してみた。

1倍台の予想が少なく4件中3件だったので回収率が高くてもたまたまだと思われる。

2〜3倍も47件しかないのでブレ幅が大きそうだけど、まあ参考程度には使えそうな感じだった。

ただ回収率が100%を超えていないのでこのモデルでは競馬で儲けるのは不可能ということが分かった。

 

予想オッズ 回収率 的中率
1~2倍 285.0% 75.0%
2~3倍 98.9% 34.0%
3~5倍 72.2% 23.5%
5~10倍 73.2% 12.8%
10~20倍 80.7% 7.6%
20~50倍 77.3% 4.1%
50~1000倍 86.2% 1.6%
全体 0.0% 0.0%

 

 

オッズ>予想オッズだけを買ったとき

オッズと言うのは参加者が思う勝率と同義なので、機械学習で予想したオッズよりも高ければお得ということでお得と予想された馬だけ買ったとしたらどうなるかと分析してみた。

例えば機械学習では50%勝つと出ているのに実際のオッズが10倍だったらお得な状態としている。

そういうお得な状態は全体の3割程度起きていた。

  出走頭数 勝ち数
お得 1111 59
お得ではない 2695 205

 

お得な状態はホントにお得だったのか

回収率を求めると全然お得ではなくてむしろ逆転していた。

機械学習を使って競馬で儲けるためにはこの実際のオッズとの乖離をいかに見つけるかだと思っているんだけど、難しそうだ。

 

オッズ 回収率 的中率
お得 69.7% 5.3%
お得ではない 82.2% 7.6%

 

まとめ

高確率で勝ちそうと予想した部分に関しては若干回収率が高くなって意味がありそうなモデルだけど、中間層は全然当たっていない。

また勝たないと予想した馬は逆に勝つことがあり、ランダムにかけるよりも少しマシな回収率になった。

azureMLはずっと前に解約したのでこれ以上の分析はできないけど、次はgoogleのBigQUERYを使ってデータの可視化から機械学習までやってみたいと思っている。

 

 

 

 

 

まとめた過去記事

白血病(CML)治療に関する医療費は年間いくら払っているのか

白血病CML)の治療

保険適応前は720万位の請求があるけど、最後払っているのは8万円。ポイントが20000ポイント戻ってくる。民間の保険入ってなくてもこんな感じ。日本の保険制度は最高だな。

 

白血病はざっくり分けて骨髄性とリンパ性、急性と慢性の4種類ある。

CML慢性骨髄性白血病のことを指す。

 

慢性:Chronic

骨髄性:Myelogenous

白血病:Leukemia

頭文字とっただけですね。

 

CMLは唯一特効薬が開発されていて、治療の第一選択肢は投薬治療が選択される。


f:id:jralove:20200621131842j:image

 

治療の様子

ということで自分も発症してから5年くらい薬を飲んで治療している。

抗がん剤と言えば抗がん剤なんだけど、分子標的治療薬と呼ばれる類の薬で、ほとんど副作用がなくて使える。

選択できる薬は何種類かあるんだけど、自分はスプリセルと言う薬を飲んでいる。

 

実際自分もあまり苦労せずに生活している。

 

覚えている副作用

微妙に不調なものが多くて副作用なのか普通なのかは既に判断がつかない。

  • めっちゃ頭が痛い

飲み始めた直後は体が薬に慣れてなくてめっちゃ頭が痛くなった

  • 子供が上手く生まれる保証がない

多くは語らないけど大変だった

  • 胸水が出る

胸に水が溜まる、肺がんの症状でもあり健康診断会場がパニック

 

スプリセルの値段

基本毎日2錠飲む薬で薬価は1錠あたり10000円とめっちゃ高い。

最近ちょくちょく話題になってる高額すぎる薬の仲間である。

3ヶ月分処方してもらうと180錠になり、180万とめっちゃ高い。

そこから保険が効いて50万くらいになって、高額療養費制度によって90000円になる。

そして、自分の入ってる健保は20000円超えた分は付加給付金が出るので最終的には20000円で良い。

日本の保険制度最高だな。

 

 

高額療養費と限度額認定証

よく同じものとして語られているけど、高額療養費は月の支払い金額を90000円位に抑える保険制度で、それ以上支払ったら後から健保からお金がもらえる。

限度額認定証は立て替え払いをせずともその場で差し引きの精算してくれて90000円だけでよくなるもの。

実は手元にお金がある人は、50万くらいクレジットカードで払って後から差分を健保からもらうほうがポイント分お得。

 

WINTICKETのキャンペーンで元を取れるか試してみた。※プロモーションコードで期待値はプラス656円

WINTICKETとは

ネットで投票できるオンライン競輪及び競艇

平日も休日も朝の8時から夜の11時までレースがやっているのでギャンブル狂にはたまらないサービス。

プロモーションコードはJUMBO-1000-89


f:id:jralove:20200617215811j:image

 

ベットの仕方

賭けるときには一度内部のポイントにチャージしてベットする。

チャージは口座、ペイペイ、カードとか色々選択できる。

 

内部のポイントから現金化はできない。

当たると払い戻し金は現金として戻ってくる。

おそらくこのフローをやることでギャンブルなのにキャンペーンによるバラマキができるようになっている。

そしてギャンブルなのにカード利用ができるようになっている。

 

キャンペーン多くない?

早速キャンペーンの紹介、初回10000円分

 

ペイペイジャンボ

利用金額の10%がペイペイ残高として戻ってくる、たまに1000%返ってくるというキャンペーン。

プラス1000ポイント

初回入金プラス10%

初回入金した金額の10%がプラスで付与されるというキャンペーン。

プラス1000ポイント

初回ポイント

会員登録完了で最初から付与されるというキャンペーン

プラス1000ポイント

還元率3%

賭けるごとにかけた金額の3%が戻ってくる。

プラス12500×0.03=375ポイント

友達紹介 プロモーションコード

今なら友達紹介キャンペーンがプラスでやっていてさらにお得なキャンペーン

プラス500ポイント

--------------------------------------------------------------
◆WINTICKETの新規登録はこちらからです!
通常1,000ptプレゼントのところ、プロモーションコード入力で、+500pt プレゼントします!
https://winticket.page.link/1500pt-present

◆新規登録後は、以下のステップで「プロモーションコード入力」ページで、以下のコードを入力してください。
JUMBO-1000-89
 
◆「プロモーションコード入力」は、マイページ>各種情報>プロモーションコード入力から入力できます。
 
<キャンペーン期間>
6月18日(木)0:00 ~ 6月21日(日) 23:59
--------------------------------------------------------------

 

期待値の計算

キャンペーンを合計すると12875ポイント+ペイペイ残高1000ポイント。

競輪、競艇控除率は25%なので、12875×75=9656円。プラスペイペイ1000ポイントなので、650円得をする。

これは挑戦するしかない!!!

 

実際元を取れるか試してみた

自分はお友達紹介キャンペーンを経由しなかったので12000ポイントスタート。賭けるごとに3%戻ってくるので

12360×0.75=9270円なので270円は得するはず。

 

と言う事で1レース500ポイントをかけるというマイルールを決めてベット開始。

当たりやすいワイドを中心に賭けることで期待値通りになるような作戦で進める。

 

結果はこちら!

9170円!期待値マイナス100円という奇跡的な着地に。ギリ得してよかった。

これ以上やっても損するだけなので、払い戻しして終了。
f:id:jralove:20200617215724j:image

今なら友達紹介キャンペーンがあるのでもう少し有利

自分のやった時より得な条件でチャレンジできるのでやってみては?

--------------------------------------------------------------
◆WINTICKETの新規登録はこちらからです!
通常1,000ptプレゼントのところ、プロモーションコード入力で、+500pt プレゼントします!
https://winticket.page.link/1500pt-present

◆新規登録後は、以下のステップで「プロモーションコード入力」ページで、以下のコードを入力してください。
JUMBO-1000-89
 
◆「プロモーションコード入力」は、マイページ>各種情報>プロモーションコード入力から入力できます。
 
<キャンペーン期間>
6月18日(木)0:00 ~ 6月21日(日) 23:59
--------------------------------------------------------------
 

【機械学習で競馬予想⑦】機械学習で導き出された勝率を分析して儲かるのかを検証してみた

機械学習で勝つ確率を予測してみた

AzureMLから出力されるのは馬ごとに勝つ確率が出る。

2019年芝1200メートルを走った馬について、のべ3800頭についてそれぞれ勝つ確率は〇〇%って出力される。

 

そのまま集計しても良かったんだけど、競馬はオッズで考えるのがしっくりくるので、予想オッズを勝率から逆算して出している。

例えば機械学習で勝率50%と出たら、1/0.5*0.8=1.6倍と出している。

オッズとの比較すると雰囲気使えるかなと思っている。

予想オッズ 出走頭数 勝ち数
1~2倍 4 3
2~3倍 47 16
3~5倍 264 62
5~10倍 632 81
10~20倍 649 49
20~50倍 760 31
50~1000倍 1353 22
それ以上 97 0

 

 

機械学習で予測された勝ちそうな馬をそのまま買う

予想オッズの平均値を書いておくんだったと思いつつ、回収率と的中率を出してみた。

1倍台の予想が少なく4件中3件だったので回収率が高くてもたまたまだと思われる。

2〜3倍も47件しかないのでブレ幅が大きそうだけど、まあ参考程度には使えそうな感じだった。

ただ回収率が100%を超えていないのでこのモデルでは競馬で儲けるのは不可能ということが分かった。

 

予想オッズ 回収率 的中率
1~2倍 285.0% 75.0%
2~3倍 98.9% 34.0%
3~5倍 72.2% 23.5%
5~10倍 73.2% 12.8%
10~20倍 80.7% 7.6%
20~50倍 77.3% 4.1%
50~1000倍 86.2% 1.6%
全体 0.0% 0.0%

 

 

オッズ>予想オッズだけを買ったとき

オッズと言うのは参加者が思う勝率と同義なので、機械学習で予想したオッズよりも高ければお得ということでお得と予想された馬だけ買ったとしたらどうなるかと分析してみた。

例えば機械学習では50%勝つと出ているのに実際のオッズが10倍だったらお得な状態としている。

そういうお得な状態は全体の3割程度起きていた。

  出走頭数 勝ち数
お得 1111 59
お得ではない 2695 205

 

お得な状態はホントにお得だったのか

回収率を求めると全然お得ではなくてむしろ逆転していた。

機械学習を使って競馬で儲けるためにはこの実際のオッズとの乖離をいかに見つけるかだと思っているんだけど、難しそうだ。

 

オッズ 回収率 的中率
お得 69.7% 5.3%
お得ではない 82.2% 7.6%

 

まとめ

高確率で勝ちそうと予想した部分に関しては若干回収率が高くなって意味がありそうなモデルだけど、中間層は全然当たっていない。

また勝たないと予想した馬は逆に勝つことがあり、ランダムにかけるよりも少しマシな回収率になった。

azureMLはずっと前に解約したのでこれ以上の分析はできないけど、次はgoogleのBigQUERYを使ってデータの可視化から機械学習までやってみたいと思っている。

過去記事

 

オマケ

シルクホースクラブで出資しているピクシーナイトは入厩もして、7月の新馬戦に向けて調教を進めていたけど、腫れが出てしまって治療に専念するため次相が未定になりました。

残念だけどあまりひどい怪我ではなさそうなのでゆっくり進めてもらいたい。


f:id:jralove:20200606221008j:image